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previously defined symbol signifies replacement of 
cos B by sin B in the 2po-M,lsH interaction elements and 
change in sign in the S H H factors. Note, in the EH 
method D and D are identical, which is not necessarily 
so in the KEH formulation. 

The energies of the b2 orbitals in the CNDO and 
special EH cases are obtained in expansion as follows. 

I n the preceding paper2 analytic expressions were 
developed for the orbital and total electronic 

energies of the first-row dihydrides within the 
framework of two important variations of the extended 
Huckel method.3'4 The major purpose of the develop­
ment was to ascertain how the various specific inter­
actions recognized by the theory contribute to the com­
puted energies, and how these contributions change with 
changes in molecular geometry. It seems clear from the 
results obtained, and those of other investigators,5 that 
such semiempirical theories should be generally better 
able to approximate the energetics of geometry changes 
from equilibrium configurations involving displace­
ments of nonnearest neighbor atoms {i.e., bond angle 
variations) than of neighboring more strongly bound 
atoms. In neither case, however, would confidence in 
the energy surfaces generated by these methods as 
originally formulated seem warranted. 

It appears from some recent studies, though, that 
considerable improvement of these independent electron 
methods is possible if charge redistribution techniques 
which alter the atom-type or standard molecule param­
eters are employed. Such fairly uncomplicated pro-

(1) Research performed under the auspices of the U. S. Atomic 
Energy Commission. 

(2) S. Ehrenson, / . Am. Chem. Soc, 91, 3693 (1969). 
(3) R. Hoffmann, J. Chem. Phys., 39, 1397 (1963), and later papers. 
(4) M. D. Newton, F. P. Boer, and W. N. Lipscomb, J. Am. Chem. 

Soc, 88, 2353 (1966), and succeeding papers in the same volume. 
(5) Cf. L. C. Allen and J. D. Russell, / . Chem. Phys., 46, 1029 (1967). 

y = -x = -f ± Vx(i + 1 ^ r 1 ' " ) (A16) 

Now T_ = (d + f)/2 = (D + G)/2, since m = 0 and 
X = E2. The same replacements for bar quantities as 
before are made; for the CNDO applications exchange 
of the bond orders /VM,iSH f"or

 ^VM.ISH are also made. 

cedures specifically as applied to the EH method of 
Hoffmann6 have yielded interesting results and appear 
to be gaining a measure of acceptance in the study of 
geometrical isomerization of large hydrocarbon mole­
cules and ions (mainly the angular configuration 
problem).7 Parameter adjustment based on charge 
distributions, which is entirely consistent with the 
philosophy of the original methods, represents a way, 
albeit an averaged way, of imposing self-consistent 
field conditions on the zeroth-order wave functions, 
and stands the chance of successfully approximating 
the results of more complete theories if integral 
variations with geometry change are approximately 
paralleled. Angular effects are certain on these 
grounds to be more favorably treated than bond 
stretches or contractions. 

It is not surprising that the CNDO approximations,8 

which are true SCF methods as applied to wave 
functions obtained from complete but simplified 
Hamiltonians, are also capable, without specific 
modification for the task, of reproducing molecular 
energy variations with bond angle change quite suc­
cessfully. Moreover, these methods, originally claimed 
to not as satisfactorily account for energy changes 

(6) D. G, Carroll, A. T. Armstrong, and S. P. McGlynn, ibid., 44, 
1865 (1966). 

(7) Cf. J. E. Baldwin and W. D. Fogelsong, J. Am. Chem. Soc, 90, 
4311 (1968). 

(8) J. A. Pople and G. A. Segal, J. Chem. Phys., 44, 3289 (1966). 
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Abstract: Analysis has been carried out to obtain closed-form energy and electron distribution expressions for the 
first-row atom dihydrides as represented by extended-Hiickel theory modified by self-consistent charge redistribu­
tion procedures, and by the similar but theoretically more soundly grounded SCF CND02 method. Previous 
examination of this group of molecules revealed deficiencies in the ability of two important variations of zeroth-
order Huckel theory to represent energy upon geometry dependences. From the results obtained here, the specific 
way in which the charge imbalances established in the zeroth-order results are modified by the variations in electro­
negativities of the atoms so charged may be followed. Good approximations to the self-consistent energies and 
charge densities are obtained in both the Huckel and CNDO methods by familiar closed form summation proce­
dures. Exactly how the original and the redistribution parameters interact to change the energy upon geometry 
dependence are revealed and the reasons why the Huckel redistribution procedure is inherently inferior to the SCF 
redistribution of the CND02 method are examined. The approximate cancellation of hydrogen-hydrogen electron 
and nuclear repulsions are recognized in the CNDO angle deformation problem and the influence of this cancella­
tion on making the CNDO and extended Huckel procedures appear similar is discussed. 
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accompanying nearest neighbor distance variations, may 
in fact, with certain well-defined exceptions, yield fair 
energy variation approximations and thereby provide 
useful insights into this important type of problem. 
Extensive application of the CND02 method in this 
direction is underway.9 

As an extension to the work described in ref 2, the 
first-row closed-shell dihydrides, MH2, are examined in 
the framework of the two methods discussed, i.e., the 
charge redistributed extended Huckel, CREH, and the 
true SCF CND02 methods. The approach is the 
same as previously adopted in that approximate 
analytic expressions for the orbital, electronic, and total 
energies, and where necessary charge distributions, are 
derived and their changes with angular geometric 
variation assessed. Where possible, comparisons with 
Walsh's rules will again be drawn, under the recognition, 
however, that the electronic and thereby the total 
energies are not the simple proportional functions of the 
orbital energies they were accepted to be in the previous 
treatments discussed. 

Theory and Mechanics of Charge Redistribution in the 
EH Method 

The symmetry orbital approach detailed in ref 2 is 
again used. Employing the same notation, the fol­
lowing exact relationships for the individual symmetry 
orbital contributions to the total charges for the 
six and eight-valence electron cases may be obtained 
either from the orthogonalized matrices10 or more 
directly but somewhat more laboriously from the 
orginal matrices. 

(1) 

(2) 

(3) 

(4) 

These equations are generally appropriate for the EH 
calculations; the density in the out-of-plane orbital, 
q2py, is zero and two respectively in the six- and eight-
electron cases. The orbital energies, x, are for the 3ai 
and 2b2 levels, the most antibonding of the particular 
symmetries in eq 1-4. 
_ Where the quantities Pj(A — x), QI(A — x), and 
QI(D — x) are small compared to unity as they typically 

(9) J. A. Pople, private communication. 
(10) C. A. Coulson and H. C. Longuet-Higgins, Proc. Roy. Soc. 

(London), A191, 39 (1947). 

are in the cases of interest, the charge densities may be 
expanded to good approximation about the values 
obtained from the zeroth-order solutions with the 
original VSIP's. Recognizing that x3ai, B, E, and E 
will be quite insensitive to balanced changes in the 
diagonal elements (i.e., Aa28 = Aa2p = —AaH, accom­
panying charge redistribution, vide infra), a remarkably 
compact expansion may be obtained. 

Po 

A?M = tfM -

n\W'+ A0 

Th D0-

A f e s + <?2p» + ?2p, + <?2p„) 

2P0 \ AA ^ + 

Th A0 — xjA0 — x 

< ) ( 

F 
+ 

2Q0 

Th D0- x/D0 -
AD 

+ (5) 

+ x) 

2<3c 
Y\T^ "*" do ) Qo 

Here 

Y=[I+ [POKAO - x)Y + [QoI(Do - X)YV 

(6) 

Y=[I+ (2Qo/do)2] 2TVs 

The quantities AA, AD, and AD are, of course, Aa25, 
Aa2P,, and Aa2pi- The efficacy of this approximation is 
demonstrated in Table I where sizable and unmatched 

Table I. Tests of the Charge Density Difference 
Expansion, Eq 3a'b 

Aaji c 

1.2 
2.4 
4.8 

Aan A(g2, + ?2pl) 

-1 .35 0.127(0.132) 
- 2 . 7 0.298(0.263) 
- 5 . 4 0.606(0.526) 

A(?2„) 

0.166(0.148) 
0.330(0.296) 
0.590(0.591) 

A?M 

0.293(0.280) 
0.628(0.559) 
1.196(1.017) 

"All energies in eV: A0 = —21.4, D0 = D0 = —11.4, and 
(aB)0 = —13.6. b The first value in each column employing eq 3 
and 4, the values in parentheses from eq 5 with the expansion values 
of S (ref 2, eq 9) also employed in the equating of A — x and D — x 
to a + 8 and d + S, respectively. c AaM = AA = AD = AD. 

shifts in diagonal elements about the zeroth-order 
parametrization for a singlet CH2-like molecule are 
tested. It is apparent that the expansion overestimates 
the charge difference component of the ax symmetry 
somewhat and underestimates that of the b2 symmetry, 
for the smaller Aa's. At larger Aa's both are under­
estimated but not seriously even though rather large 
changes are forced.11 The third line of Table I, it 
should be recognized, corresponds to ~0 .4 electron 
excess on M if a linear version of a-upon-g dependence, 
which is somewhat rougher than often used,7 is invoked 
and assumes a rather drastic and unrealistic dependence 
for the hydrogen matrix elements as well. 

It may therefore be concluded that the charge 
densities, at least in the systems of present interest, will 
exhibit roughly linear dependence upon the VSIP 
values employed. If, conversely, the a values are 
themselves realistically adjustable through equations 

(11) Despite results shown in Table I which appear to be to the con­
trary, the truncated expansion of eq 3 should generally be of better 
mathematical quality than that of eq 4. Approximations of the off-
diagonal, diagonal quotient terms compensate here to make both esti­
mations appear equally good. 
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Table II. Charge Redistribution Effects in CH2 upon Variation of Internal Angle0 

8 

45 
50 
54.3 
60 
70 
80 

e 
45 
50 
54.3 
60 
70 
80 

(* 
92p 

3. 
3. 
3. 
3. 
3. 

>.s + 
JM ( 1 ) 

143 
179 
212 
252 
318 

Aa 

0.746 
0.694 
0.686 
0.723 
0.836 

?2p,M ( 1 ) 

1.106 
1.046 
1.010 
0.976 
0.944 

<?tot M (1) b 

4.249(4.239) 
4.225(4.216) 
4.221 
4.228(4.217) 
4.262(4.250) 

(4.285) 

-U 
0.8104 1 
0.7744 1 
0.7488 1 
0.7220 1 
0.6870 1 

9tot M ( t°' 

4.063(4.068) 
4.058(4.062) 
4.058 
4.060(4.064) 
4.070(4.076) 

(4.088) 

- / - S 

.0755 2.228 

.1896 2.072 

.2413 2.020 

.2635 2.028 

.2421 2.042 

-/*. 
0.0707 
0.0733 
0.0759 
0.0798 
0.0871 

- / 2 P 1 

0.0497 
0.0430 
0.0374 
0.0298 
0.0163 

(E(6) - £(60))°tot 

1.154(0.511) 
0.548(0.216) 
0.228 
0.0(0.0) 
0.088(0.095) 

(0.279) 

- / 2 P 2 - L 

0.1291 0.2495 
0.1245 0.2408 
0.1228 0.2361 
0.1228 0.2424 
0.1262 0.2296 

(E(6) - £(60))°tol 

1.349(0.710) 
0.519(0.149) 
0.147 
0.0(0.0) 
0.411 (0.575) 

(1.296) 
a AU energies in eV; / and L values in electrons/eV; q and/values are unitless; B in degrees, 

columns obtained analytically. Values in parentheses are exact computer results for comparison. 
1 First entries are sums of the first two 

which are linear in the orbital densities, then analytic 
evaluations of the convergence properties accompanying 
the self-consistent field cycling procedure may be 
conveniently made. The equation systems are similar 
to those encountered previously in analysis of co-
technique effects in 7r-electron theory;12 similar notation 
is therefore used. The cycling equations are condensed 
as follows with inclusion of the damping factor, D, on 
the adjustment of the a's as it would be imposed in the 
computational iterative procedure to guarantee conver­
gence. 

AcW1' = Aa2pi<» = Aa2F (D Aa2p„<« = Aa<» 

, (D Aa<« = Du(qM^ - qM
m) = DuAq^ 

AqM^ = /2sAa2s<» + /2pjAa2pl<» + 

/2p,Aa2p/» = LAa^ 

Aa<» = D[A + uqM
{2) -

(7) 

(8) 

(A + CO?M
CO> + DG>AqM(»)] = 

Du[Aq^ + (1 - D)AqM (D ] (9) 

A a w = Du E (1 - DyAqM
<-n-i) = Aq<-n+1)L-' (10) 

J = O 

It is quickly recognized that the cycling procedure under 
the conditions outlined is resolvable in terms of geo­
metric series and that consequently, since 

qW _ g(o) = Y1 AqU) 

7<»> -
q(o) = Aq(U + 

LDuAq (D Aq (U 

1 - [LDu + (1 - D)] 1 - Lu 

( H ) 

(12) 

for \LDu + 1 — Z)J < 1. Note, the converged value 
of the density is properly independent of the damping 
factor employed to guarantee convergence in the cycling. 
We are now in a position to analyze the factors con­
tributing to production of the self-consistent densities 
are how these factors will be affected in detail upon 
geometric change in the molecular structures. 

(12) S. Ehrenson, / . Phys. Chem., 66, 706, 712 (1962). 

In CH2 (1A1 state, /'CH = 1-094 A, 26 = 120°), /2s, 
/2ps, and /2p, are from eq 5, -0.0798, -0.0298, and 
— 0.1228 electron/eV, respectively, and L is therefore 
-0.2324. With w = 11.9 eV/electron,13 the above 
analysis indicates the largest value of D under which 
convergence may be obtained is 0.531 and that qM°> will 
be 4.060. The value of ^M" obtained by complete 
computer analysis using D = 0.4 is 4.064. The limiting 
value of D for convergence obtained analytically was 
roughly verified; a computer run with D of 0.6 steadily 
diverged. 

Similarly for H2O (T-OH = 0.960 A, 28 = 120°), /2s, 
/2PI, and /2p, are -0.0474, -0.0200, and -0.1511 
electron/eV. Since co2s and u2p are not equal (16.9 
and 17.4 eV/electron, obtained as the slope for a linear 
relationship connecting the VSIP's of neutral and 
uninegative oxygen atoms6), a weighted L value of 
-0.2171 is obtained to be used with u = 17.4. The 
largest D value for convergence is therefore predicted 
to be 0.419 and the analytic qM" value from eq 12 is 
6.190. By computer analysis with D = 0.4, gM" is 
6.241. With D at 0.6, the computer cycling diverged, as 
in the CH2 runs but much more rapidly, indicating the 
analytic assessments of maximum D for convergence 
to be trustworthy. The initial computed densities, 
5M(1>, are 6.906 and 6.905 by analysis (eq 3 and 4) and 
full computation; the comparable numbers for CH2 

are 4.228 and 4.217. 
Tables II and III present the analytically derived 

parameters for CH2 and H2O which determine the self-
consistent densities and, hence, the adjusted diagonal 
elements and molecular energies. It is easily shown 
that 

% 

and 

(») _ O M 
(0) = Aa L- 1GZM 

(O=) 
- ?M<») = 

uAqu
(1) 

1 - Lu 

(13) 

2(5 + 8)" = 2(5 + 5)° + AE0 (14) 

where AE0", which represents the correction to the 
total electronic energy forthcoming from the estab­
lishment of self-consistent charge densities, is obtained 

(13) H, Basch, A. Viste, and H. B. Gray, Theor. Chim. Acta, 3, 458 
(1965). 
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Table III. Charge Redistribution Effects in H2O upon Variation of Internal Angle" 
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e 
45 
50 
54.3 
60 
70 
80 
90 

e 
45 
50 
54.3 
60 
70 
80 
90 

(q-2, + 
92P1)Jl'" 

3.513 
3.543 
3.568 
3.600 
3.651 
3.687 

Aa 

3.307 
3.257 
3.256 
3.296 
3.432 
3.563 

(?2p,)-M(" ?tot 

1.464 
1.398 
1.352 
1.306 
1.253 
1.226 

M ( 1 ) * 

6.977(6.976) 
6.941(6.940) 
6.920 
6.906(6.905) 
6.904(6.903) 
6.913(6.913) 

-U 
0.2116 
0.1994 
0.1900 
0.1792 
0.1640 
0.1544 

(6.918) 

-/-

0.2906 
0. 
0. 

3520 
3960 

0.4407 
0.4864 
0.5049 

9tot M ( " > 

6.190(6.256) 
6.187(6.246) 
6.187 
6.190(6.242) 
6.197(6.249) 
6.205(6.260) 

(6.265) 

? 

6.938 
6.840 
6.770 
6.703 
6.642 
6.624 

-/2s 

0.0441 
0.0453 
0.0462 
0.0475 
0.0495 
0.0510 

-he, 

0.0378 
0.0315 
0.0264 
0.0200 
0.0100 
0.0027 

(E(B) - E(60))\ot '•"• 

0.754(0.583) 
0.436(0.322) 
0.218 
0.0(0.0) 
-0.230 ( — 0.118) 
-0.330(-0.132) 
-0.356 (-0.126) 

0. 
0. 
0. 
0. 
0. 
0. 

-/2p, 

1574 
1560 
1538 
1511 
1479 
1465 

-L 

0.2380 
0.2315 
0.2251 
0.2172 
0.2060 
0.1987 

(E(B) - £(60)r,„t 

1.604(2.426) 
0.619(0.935) 
0.169 
0.0(0.0) 
0.476(0.698) 
1.186(1.880) 

(2.454) 

" Footnotes of Table II apply. b Includes two electrons from the M2pj,M) orbital. c From column 6, Table III, ref 2. d The exact and 
analytical £tot values are themselves in good agreement. 
-139.43 and -134.63. 

For example, £(6O)1Ws are respectively —161.16 and —161.62; £(60)=° tot s are 

in a straightforward manner by manipulation of the 
equations for S and 5 given in ref 2. 

A£V° = 2{AA + AD + (AS + AS) + 0, AD]0" (15) 

The last bracketed term indicates zero for the six 
valence-electron, and AD (Aa2py, from the bi symmetry 
orbital) for the eight valence-electron cases. 

A^2<2PAP+fQ-5(-^±^\=f+Aa 
a + a a + a ) 

A - {2QAQ -Ad\ . f̂-
(16a) 

(16b) 

AP/Aa = - V252 S M ,1sH | | o)H + ( l - IJw2SIZw2Pr1 /2 

(17a) 

AQjAa = - V2S2p<rM,isH X 

K 
cos d<- wH + (l - f)"2P} / ^ (17b) 

AQlAa = - V 2 S 2 P * M , I S H X 

sin ei*UH+(l ~ f ) w p 2 | / w ^ r - 1 ' ^ (17c) 

AajAa — (w2s/w2p) = Ad/Aa — 1 = 

(1 + * S H H WH — 252
2sMiisH X 

K 
WH + (1 — K)uis ) — 2 S V ( U S M X 

cos2 e(* WH + (1 - *)w2 p ) \l w 2 p r (18a) 

AdIAa — f KS¥ WH — 2S2
2p<rM,isH X 

K 
sin2 B[^ WH + (1 - *)w2p W w2pr (18b) 

Therefore 

AE, 
W23 + ! + ( / + + / - ) + 0, 1 ^Aa = JAa 

(19) 

The particular results of Tables II and III may be 
summarized as follows and suggest the following factors 
are important in determining the charge redistribution 
effects upon electronic energy and differential charge 
donation. 

(1) In both CH2 and H2O, the former a case where 
there is little charge donation predicted by either the 
zeroth-order or self-consistent results and the latter 
where appreciable charge donation in the original cal­
culation is substantially moderated by the redistribution 
procedure, the electron densities are affected only 
weakly by angular charge. The qM values vary at most 
0.03 electron over the range of the zeroth-order results 
and by less (~0.01) when the self-consistent results 
are compared. Still, it should be noted that extrema 
for charge donation appear in all cases to fairly closely 
follow the extrema for the electronic energies. 

(2) In the case OfCH2, the minimum value for ?M
(m) 

occurs roughly at the same value of 6 as does that for 
(7M(1>>

 a fact attributable to the essential constancy of L 
over the interesting 6 range. L is quite constant, it 
should be noted, despite variations in the individual 
/ values; the changes cancel rather strongly in the sum. 
Consequently, since the difference (#M 

(CO) 
<7M(1)) re­

mains fairly constant, Aa is weakly varying with, im­
portantly, a similar functional dependence on 6 as 
characterizes £° t o t and the q values.14 Coupled with 
the essentially invariant nature of SF, the characteristics 
of the .E"tot vs. 6 dependence must be, and are, similar 
to those evidenced by £ \ , t . It is interesting that the 
variations from constancy of L, Aa, and {F occur only 
at the extremes of the 6 range (45 and 70 °), which serve 
to sharpen the upturn about the minimum in the £™tot 
vs. 6 dependence somewhat compared to that for E°tot. 

(3) H2O exhibits rather different behavior com­
pounded of the cumulative effects of several tabulated 

(14) Alternatively, the second relation of eq 13 reveals that Aa will 
vary linearly with Agji(I> for constant L. 
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factors. Although the analytic zeroth-order elec­
tronic energies do not exhibit a distinct minimum over 
the 6 range examined, the q values do, and so do the 
values of Aa extracted therefrom. (Where the ana­
lytic E°tot curve flattens out as the linear configuration 
is approached, a very shallow minimum is observed in 
the exact computer results at >80°.) The shapes of the 
Aa vs. 6 dependence and its degree of curvature may be 
attributed in part to the distinct variation in L upon 
angular variation: where #M

(1) has a minimum at 
~ 7 0 ° , the minimum is shifted in to ~ 5 5 ° for Aa with a 
somewhat sharper rise in the high-0 direction. On the 
other hand, J exhibits a monotonic decrease with 
increasing 6, flattening out somewhat toward the linear 
configuration, but sufficiently slowly so that a minimum 
in the product 3Aa is observed in the same vicinity as 
was the minimum in the Aa curve itself, and further 
so that the [FAa curve is quite symmetrical. Imposition 
of this self-consistency correction produces the E°°tot 

dependence detailed in Table III. A minimum is 
observed around 60° (experimental value 52.3°), with a 
somewhat greater slope predicted for a geometry varia­
tion toward small values of 6. 

The relative sizes of the corrections applied to E0 

to produce E" are usefully compared. In CH2 these 
are on the order of 2 eV; in H2O they are more than 10 
times larger (~25 eV). This difference is in part due 
to the larger Aa which pertain for the latter, arising 
from more profound charge donation to M, i.e., greater 
A<7M

(I) values, and in part to the larger values of ff. 
The J values for H2O are larger because of the effect 
on the 2pa orbital and also because the effects of redis­
tribution on the b's as measured by the f values, are much 
smaller than in CH2. The latter effect may in turn be 
traced to smaller values of P, Q, Q and AP, AQ, AQ, 
and x for H2O which arise because of the increased 
differences between the a's and OJ'S for hydrogen and M. 

In contrast, the angular variation in AiT0" is only two 
to three times greater for H2O than CH2. This may be 
attributed to the fact that the Aa variation with angle 
is not only relatively, but even absolutely smaller in the 
H2O case, but also because EF contains a larger constant 
factor for this molecule (arising from the 2p„ orbital) 
which does not vary, insofar as ff is concerned, with 
angle. The sizes of these corrections are crucial in 
producing the minimum at 60°; if they were one-third 
as large as those shown in Table III, thereby resembling 
the variation exhibited by CH2, the minimum would be 
shifted to higher d by ~10° , if one-fourth as large an 
additional shift of ~ 5 ° would occur.13 

(15) As a final point concerning these matters, to the extent which the 
Walsh analysis16 on the angular configuration of symmetrical triatomic 
molecules is based upon the filling of MO's with characteristic energy 
variations and which simply determine the total energy, the present re­
sults add little to the conclusions of the previous work.2 A fact which 
is noteworthy concerns the balance of effects which determine the 
ai level energies. In both CH2 and HzO, the self-consistent energies for 
these levels appear to have minima close to where the experimental total 
energy minima lie. This was not observed in the zeroth-order results. 
It should be recognized, however, that the various hybridization situa­
tions (on the different M here, in the symmetric MO's), upon which 
Walsh constructed the rationale for his rules, have their origins further 
obscured, beyond that already noted,217 by the mixing of hydrogen 
effects and among symmetries through the charge redistribution proce­
dure employed. Comparisons of the sort, it will be noted, are even more 
restricted in the true SCF results following. 

(16) A. D. Walsh,/. Chem. Soc, 2260(1953). 
(17) (a) C. A. Coulson and A. H. Neilson, Discussions Faraday Soc, 

35, 71 (1963); (b) S. D. Peyerimhoff, R. J. Buenker, and L. C. Allen, 
J. Chem. Phys., 45, 734 (1966). 

Charge Redistribution in the CND 0 2 Method 

The general SCF relationship among the electronic 
and orbital energies and charge densities and bond orders 

-E^elect = ')z2ni€t
co + - 2 J ^ ° Hu (20) 

may be approximated in the following manner useful 
for the present purposes of analysis. 

Select = -,EHer + e,°) -

\ E ^ I ( Z A - ^TAA + EZBTAB} (21) 
^ M(on A) \ \ -V BF^A ) 

The approximation involves the almost complete can­
cellation within the sums 

ECV - *V)(-|(/, + A)) 

E(^ 
I*," 9*1* 

(22) 
*VX/3S)M 

which arise upon introduction into eq 20 of the equality 

i -̂ u.v 
(23) 

The strength of the approximation may be illustrated 
by consideration of the cases CH2 (rCH = 1-094 A, 
20 = 108.6°) and H2O (r0H = 0.960 A, IB = 100°). 
For the former the exact and approximate values of the 
electronic energy are respectively —335.031 and 
— 335.080 eV. For the latter the comparable results 
are -730.393 and -730.471 eV.18 

With this relationship it is possible to examine in 
detail the effects of geometric distortion of the MH2 

species. For these molecules, eq 21 may be made 
more compact without further approximation upon 
recognition that gM + 2qH = Z M + 2 and some re­
arranging. 

E*°eU 
L i 

'ZM + 2' 

? H U 7 H H - [ZM 

7MM + 2 Y M H 

7MM 

(ZM - 2)TMH + 7Hi1H2 (24) 

and, therefore 

dE 
dd ~ be K dd qu be 

(25) 

(18) Rather surprisingly, the quality of approximation appears to be 
insensitive to the magnitudes of the differences (P^a — PV0)- I n CH2, 
the P values generated on the first cycle do not change much upon 
further cycling; in H2O they do; viz., QK in CH2 changes from 0.9872 
to 0.9907 at self-consistency, while for H2O the change is from 0.7718 
to 0.8598. The natural cancellation of the P value differences, because 
of the weaker or stronger normalization conditions appropriate for their 
components, is apparently sufficient to ensure the goodness of the ap­
proximation. 
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Table IV. CND02 Energy and Charge Density Effects in CH2 with Variation of Internal Angle" 

B 

45 
50 
52 
54 
54.3 
56 
58 
60 
70 

° All energies 

22e,° + 9 0 

- 0 . 0 4 8 1 
- 0 . 2 0 7 3 
- 0 . 2 3 1 3 
-0 .2328 
- 0 . 2 3 1 1 
- 0 . 2 1 2 3 
- 0 . 1 7 0 5 
-0 .1087 
+0.4415 

in eV, 6 in degrees 

22e,=° +129 

- 0 . 5 1 6 6 
- 0 . 6 6 6 6 
- 0 . 6 5 7 4 
- 0 . 6 1 1 4 
- 0 . 6 0 0 9 
- 0 . 5 2 4 6 
- 0 . 3 9 9 6 
- 0 . 2 3 7 4 
+ 1.0702 

?H° 

0.9910 
0.9911 
0.9897 
0.9876 
0.9872 
0.9848 
0,9814 
0.9773 
0.9477 

charges in units of electrons. 

? H " 

0.9935 
0.9936 
0.9926 
0.9910 
0.9907 
0.9888 
0.9862 
0.9830 
0.9598 

7 H l H 2 

9.1209 
8.4780 
8.2578 
8.0563 
8.0276 
7.8721 
7.7040 
7.5510 
6.9777 

Select + 335 

- 0 . 9 4 3 2 
- 0 . 4 5 7 6 
- 0 . 2 6 1 0 
- 0 . 0 6 4 1 
- 0 . 0 3 1 0 
+0.1437 

0.3542 
0.5702 
1.7049 

Table V. CND02 Energy and Charge Density Effects in H2O and BeH2 with Variation of Internal Angle 

e 
(H2O) 

45 
50 
52 
54 
55 
60 
70 

(BeH2) 

45 
55 
65 
75 
90 

22e,» 
+ 140 

-0 .6178 
- 0 . 6 9 1 6 
- 0 . 6 9 0 6 
- 0 . 6 7 1 5 
- 0 . 6 5 5 1 
- 0 . 5 0 7 4 
+0.0500 

+ 54 

-0 .2327 
- 1 . 0 5 6 0 
- 1 . 5 4 6 2 
-1 .7998 
- 1 . 9 1 3 6 

2Ze;" 
+ 198 

- 0 . 5 7 5 5 
- 0 . 3 3 2 2 
- 0 . 0 9 5 6 
+0.2242 

0.4173 
1.6367 
5.4967 

+ 7 0 

- 0 . 8 8 4 3 
- 2 . 1 1 7 0 
-2 .8808 
- 3 . 2 9 5 6 
- 3.4922 

9B" 

0,7689 
0.7718 
0.7711 
0.7695 
0.7682 
0.7588 
0.7251 

1,2175 
1,2032 
1.1892 
1.1784 
1.1717 

<?H" 

0.8612 
0.8598 
0.8582 
0.8559 
0.8545 
0.8455 
0.8169 

1.1643 
1.1629 
1.1570 
1.1509 
1.1466 

7H1H2 

10.2192 
9.5400 
9.3048 
9.0883 
8.9868 
8.5410 
7.9124 

7.5341 
6.5298 
5.9092 
5.5468 
5.3586 

•Select 
+ 730 

- 0 . 9 8 8 1 
- 0 . 3 9 3 3 
-0 .1568 
+0.0818 

0.2023 
0.8195 
2.1117 

+ 131 

-0 .3742 
- 0 . 2 3 8 4 
-0 .1386 
- 0 . 0 4 8 0 
+0.0170 

Etot + 221 

0.3450 
- 0 . 5 7 6 3 
- 0 . 6 1 9 3 
- 0 . 6 3 5 9 
- 0 . 6 3 6 2 
- 0 . 6 2 7 3 
- 0 . 5 9 4 9 
-0 .5402 
-0 .0009 

Etat 
+ 540 

- 0 . 4 0 0 2 
- 0 . 6 2 1 6 
- 0 . 6 5 8 0 
-0 .6667 
- 0 . 6 6 1 0 
-0 .5398 
+0.0729 

+80 

-0 .9082 
- 1 . 8 0 9 4 
- 2 . 3 3 9 0 
- 2 . 6 1 3 5 
-2 .7375 

The symbol K in eq 25 represents the repulsion integral 
coefficient of qH in eq 24; the last term in eq 25 it should 
be noted arises from the derivative of this coefficient in 
which the only term which is variable with angular 
displacement is 7HI,H2-

By application of the Coulson-Longuet-Higgins 
relationships10 to the symmetry orbital formalism dis­
cussed in the previous paper, the charge density on 
hydrogen may be obtained. The notation follows the 
Appendix of ref 2. 

QH 
1 ± 1 

(a + y*Xd + J T ) - B* d + y+ 

( -^X2T) + IX Iy++ r 
(26) 

This expression may be expanded and conveniently 
truncated for present purposes after the X^1 and X~l/* 
terms to yield for the six- and eight-valence-electron 
cases (upper sign) and four-valence-electron cases 
(lower sign) 

<7H -i{ i - g 

Vx 
T ad - B2' 

=F + 

1 
Vx 

(27) 

It is easily ascertained from eq 27 that the antisym­
metric orbital contribution to qn, expressed in the sec­
ond bracketed term, will vary with angle dependent 
upon whether the change in g — f (equal to 1Ji(^ — d)) 
is greater or less than the change in VX (|£|, which 
varies as sin B). Assuming with considerable justifica­
tion that the self-consistent charge density results 
semiquantitatively parallel the first-order results (see 

Tables IV and V below), this component would be 
expected to increase with increasing angle as long as g is 
smaller in magnitude than d since (d£/d0) < 0 and would 
only decrease if (J — d)dx/dd outweighs ( — 2x)df/d0. 
The former situation is expected and realized for such 
cases as CH2 and H2O where (f — d) < 0, and the latter 
for BeH2 where the reverse inequality pretains. 

The symmetrical orbital components, shown in the 
first bracketed term, appear somewhat more compli­
cated because of the sign option and the fact that the 
variable combinations may themselves be of opposite 
sign. When A and D are both large, or A large, com­
pared to G, g — T will be positive. If both A and D are 
of comparable size to G, as they are in BeH2, g — r 
will be negative. The product ad will always be nega­
tive since M lies intermediate between A and D. In 
general, then, g — r will always increase (become more 
positive) with increase in angle since g — r is equal to 
(G + M — A — D)Il and both G and M become more 
positive, and ad will also increase (become more posi­
tive) because M becomes more positive. Further, 
because X is large, the g — r term will always be nu­
merically larger than the ad term. 

Hence, the symmetric component of #H must decrease 
with increasing angle, in the six- and eight-valence-
electron cases because larger positive quantities and 
smaller negative quantities are subtracted from unity, 
and in the four-electron case because smaller negative 
quantities, more important than the increasing but small 
positive quantities to be added, are subtracted from 
unity. It is clear therefore that qH must decrease with 
increasing angle in the BeH2 case. In CH2 and H2O, 
the components from the two symmetries change in 
opposite directions. However, because X increases 
proportionally more rapidly than X decreases and be-
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cause of the additive effects of the two terms constituting 
the symmetric component, qH should likewise decrease 
albeit slowly because of the opposed effects from the 
two symmetries in these cases with increasing 8. 

The behavior of the two symmetry components here, 
and for the Ze4 terms as well are seen to closely resemble 
the behavior noted previously in the analysis of the 
EH and KEH results obtained for these molecules. 
Tables IV and V illustrate the angular effects; all 
numbers are exact computer obtained results with 
thresholds for convergence, <5 X 10~4 for all P„„. 
The qH values displayed are seen to have the angular 
effects predicted for them. Similar analysis is possible 
for the zeroth-order and with some additional complica­
tions for the self-consistent orbital energy sums as well.19 

Interestingly, but not surprisingly, the Se4 values exhibit 
minima in the cases where minima were observed in the 
EH and KEH calculations; for CH2 these minima 
agree fairly well. In BeH2, no minima are found. 
The possible significance of this observation is ex­
amined below. It is not, however, necessary to go into 
these details when the qK results obtained and cor­
roborated are examined as they apply to eq 25. 

Of the last two terms in eq 25, the term ^H(^7HI ,H2 /^ ) 
is uniformly larger by a considerable amount than the 
term K(dqHjd9) even though K may be much larger 
than qn. In the six- and eight-valence-electron cases 
K is 10-50 times larger in magnitude than gH but the 
derivatives are in the other direction by 10- or greater. 
Since K is negative in these cases, the effect of these two 
terms together will be to increase E^ct (make it a 
smaller negative number), but at a slower rate than 
dictated by the last term alone, with increase in 9. 
In the four-valence-electron case, K/#H is smaller in 
magnitude and generally positive, because K is small 
and positive (for BeH2). Consequently, £eiect should 
again be increased by these terms, but here slightly 
faster than by the last term alone. 

In the six- and eight-electron cases, the first term of 
eq 25 remains fairly constant over the lower part of the 
range, principally because each of the orbital energy 
sums has minima at different values of 6 in this region. 
Even so, the effect of the last two terms (mainly the last 
one) causes a continual increase in Eeiect. This in­
crease is continued and accelerated at higher values of 9 
when the orbital energy sums begin themselves to show 
substantial increases. In contrast, in the BeH2 case, the 
orbital energy sums continually decrease (become larger 
negative numbers) over the entire range of 9. The larger 
effect of the final two terms, acting in concert, are still 
capable of causing Eelect to monotonically increase over 
the entire range. Finally, only when the nuclear repul­
sion energy (/?HIH2

_1 + a constant for the angular dis­
tortions considered) is added to the electronic energy to 
produce the total energy are the over-all effects which 
truly determine structure all assembled. In the CH2 

and H2O molecules, the rates of increase of -Eeiect a r e 

sufficiently slow in the low 8 range, and even thereafter, 
so as to produce minima in £ to t. In BeH2, the rate of 
increase in irelect is slow in the low range of 8 but de­
creases at higher 9 so that the decreasing rate change 
in the nuclear repulsion energy is never overcome and 
no minimum for £ t o t is found. 

(19) See ref 2 for the analysis of orbital energy contributions in 
BeHs in the EH method where the formalism necessary here is developed 
and discussed fully. 

Comparisons of the Methods and Conclusions 

These results are extremely interesting as regards 
possible comparisons between the extended Hiickel, 
explicit electron repulsion and even more complete 
methods. As applied to the energetics of bending in 
typical MH2 molecules, the CND02 method suggests 
that the variation in the repulsion between electrons 
on the two hydrogens is the determining factor in the 
variation of the electronic energy of the molecule under­
going angular deformation. This effect overcomes the 
orbital electronic energy effects, but is itself essentially 
cancelled out by the nuclear repulsion effect variation, 
making the total energy vary roughly as the orbital elec­
tronic energy. The forms of the varying repulsion 
terms, i.e. 

Qn SS (•S'Hi2(l)im(2)/r12) dTidr2 

- Z H I Z H 2 / - R H I , H 2 

represent the analogous electron and proton effects on 
their own kind, cancellation occurring because the 
derivative of the nuclear repulsion energy is added to 
(d^ect/dfJ) to obtain (dEtot/d9) while qH(c>ym,m/<>8) 
appears with a negative sign in dEl,lectfd9; see eq 25. 
It should of course be clearly recognized that only the 
changes in the repulsions apparently cancel, or that 
the differences in electron and nuclear repulsions, which 
may be, and are large in an absolute sense for various 
MH2 molecules, are essentially constant functions of the 
internuclear angle. 

This explanation would appear superficially to be in 
disagreement with the analysis employed in justification 
of the use of the orbital electronic energies as representa­
tive of the total energy in extended Hiickel methods. 
For molecules in or near their equilibrium configuration, 
it has been demonstrated that to a good approximation 

\ L nlEf - Ef) + N = 0 (28) 

and, hence, that 

£ t o t = I Z «<(£<" + ««m) (29> 
^ i 

where Et is the total of one-electron energies, the kinetic 
and nuclear attraction energies, N is the nuclear re­
pulsion energy, and the superscripts signify whether 
the atom or molecule is considered.4'20 Summation is 
over the appropriate atomic or molecular orbitals 
which are filled. In the case of present interest, eq 28 
implies the angular change in £™ should oppose the 
change in nuclear repulsion. 

In the CNDO methods, though, E1 arises from the 
H1111 terms, which in fact contribute the angular variable 
terms, KHI,H2 and KH21HI, the core interaction terms for 
one hydrogen with an electron on the other hydrogen, 
besides angularly invariant terms U1111. The former do 
not appear in the zeroth-order F matrix while the latter 
does. The CND02 approximation then sets KAB 

equal to ZByAB, which with the MO coefficients necessary 
for Ei" brings the recipies for cancellation of the nuclear 
repulsion effects much closer than they originally 
appeared to be. 

(20) F. P. Boer, M. D. Newton, and W. N. Lipscomb, Proc. Natl. 
Acad. Sci. U. S., 52, 890 (1964). 
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In the broader view it must be recognized, however, 
that anything like exact correspondence between the 
extended Hiickel and explicit electron repulsion methods 
such as the CNDO variations should not be expected. 
It is not reasonable to expect the equality expressed in 
eq 28 to generally hold, especially in the quest for 
determination of optimum structures where nearest 
neighbor bond lengths are continuously varied. In the 
event that the equality does not hold, the prescriptions 
adopted to date for charge redistribution in the EH 
methods, which are entirely dependent upon isolated 
atom properties, i.e., the valence-state ionization po­
tentials and electron affinities, cannot satisfactorily 
reproduce the repulsion effects which are explicitly 
included in such as the CNDO methods. The scope 
of difficulty in defining meaningful separations of the 
total energy into orbital energy and repulsion contribu­
tions and construction of correlations between the 
orbital energies and Walsh's rules indicated here are 
further illustrated in several recent references.17,2x Allen 

(21) See also, G. Blyholder and C. A. Coulson, Theor. Chim. Acta, 
10, 316(1968); W. A. Bingle, "Molecular Orbitals in Chemistry, Physics 
and Biology," P. O. Lowdin and B. Pullman, Ed., Academic Press, 

Early studies of optical activity defined and utilized 
the wavelength-dependent anisotropy factor g(\) 

= Ae(X)/t(K) as a useful comparison of electronic 
transition circular dichroism to ordinary absorption. 
Kuhn, Mathieu, and others2-5 used g vs. X plots to char­
acterize various electronic transitions. The anisotropy 
factor was often found to be constant throughout a 
single transition. Its variation was taken to denote a 
change of transition in that interval. 

Later theoretical work has largely abandoned the 
concept of an anisotropy factor as a detailed function 
of wavelength. Condon6 first defined the factor as 
proportional to the ratio of integrated intensities. 

(1) NASA Predoctoral Fellow. 
(2) (a) W. Kuhn, Trans. Faraday Soc, 26, 299 (1930); (b) Z. Physik. 

Chem,, B8, 286 (1930). 
(3) W. Kuhn and H. L. Lehmann, ibid., 18, 32 (1932). 
(4) J. P. Mathieu, Ann. Phys., 3, 371 (1935). 
(5) T. M. Lowry, "Optical Rotatory Power," Dover Publications, 

New York, N. Y., 1935, p 393. 
(6) E. U. Condon, Rec. Mod. Phys., 9, 432 (1937). 

and coworkers5,1713 have, however, shown that clean 
cancellation of the extra-orbital effects are not necessary 
in order to extract information on equilibrium geom­
etry. 

Despite this, since just about the same amount of 
computational effort is required in application of any 
charge redistribution corrected EH method as for the 
CNDO methods, there seems to be little reason to prefer 
the former over the latter when structural information is 
sought. Distinction between the EH and KEH meth­
ods should be drawn on all previous accounts, how­
ever; useful and conceptually important separations of 
the kinetic and potential energy terms have been ob­
tained in the KEH method. Development of tech­
niques for the introduction of explicit repulsion and 
Coulomb integral effects22 which are consistent with 
this separation and manage to avoid the dilemma im­
plicit in eq 28, and its foundations would still appear 
to be a desirable goal both practically and for quantum 
chemical content. 

New York, N. Y., 1964, p 191; C. E. Wulfman, J. Chem. Phys., 31, 381 
(1959). 

(22) S. Ehrenson, Theor. Chim. Acta, 10, 209 (1968). 

goi = 4Roi/Doi (1) 

/?o« is t n e rotatory strength of the i •*- 0 transition and is 
defined by 

R0i = Im{yorm !0} = 0.24 X K)-38 f ^ r ^ d X (cgs) (2) 

where y0,- and m,0 are the electric and magnetic dipole 
transition moments, respectively, X is the wavelength, 
Ae(X) = €](X) — er(X), ei(X) and er(X) are the decadic 
molecular extinction coefficients for the left and right 
circularly polarized light, and the universal constants 
have been evaluated to give cgs units. D0;, the dipole 
strength of the transition, is defined by 

Doi = vo.-tf.-o = 0.96 X 1 0 - " J ^ d X (cgs) (3) 

where e(X) = Ie1(X) + er(X)]/2. 

The Anisotropy Factor of Optically Active Ketones 
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Abstract: A simple theory for calculating the anisotropy factor g = 4R0i/D0i of optically active ketones is de­
veloped. The theory is checked against a set of /3-equatorial substituted adamantanones and methyl-substituted 
cyclohexanones. The dynamic coupling model parameter G0;, the ketone transition electric quadrupole moment, 
is estimated to be 1.5 X 10~25 cgs from data obtained with correction for vibronic coupling. It is determined, 
independent of the model, that the (3-equatorial substituted adamantanones have nonvibronically coupled transition 
electric dipole moments that have dominant Z polarization (i.e., C=O axis polarization). The same conclusion 
obtains from the model calculations. The calculations on substituted cyclohexanones for the differential value 
of their y-polarized moment relative to their Z moment compare well with experimental values. Consideration of 
anisotropy factors would seem a means of correcting the inherent bias in ketone rotatory strength calculation to 
only Z components of the transition electric dipoles. 
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